Multi-Point Flux MFE Decoupled Method for Compressible Miscible Displacement Problem

نویسندگان

چکیده

In this paper, a multi-point flux mixed-finite-element decoupled method was considered for the compressible miscible displacement problem. For problem, fully discrete backward Euler scheme proposed, in which velocity and pressure equations were by MFE using BDM1 elements combined with trapezoidal quadrature rule. The concentration equation handled standard FE method. error analysis velocity, pressure, rigorously derived. Numerical experiments to verify convergence rates simulate problem of water–oil system presented.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

L-norm Error Bounds of Characteristics Collocation Method for Compressible Miscible Displacement in Porous Media

A nonlinear parabolic system is derived to describe compressible miscible displacement in a porous medium in non-periodic space. The concentration is treated by a characteristics collocation method, while the pressure is treated by a finite element collocation method. Optimal order estimates in L2 is derived.

متن کامل

A Combined Mixed Finite Element and Discontinuous Galerkin Method for Miscible Displacement Problem in Porous Media

A combined method consisting of the mixed finite element method for flow and the discontinuous Galerkin method for transport is introduced for the coupled system of miscible displacement problem. A “cut-off” operatorM is introduced in the discontinuous Galerkin formular in order to make the combined scheme converge. Optimal error estimates in L(H) for concentration and in L(L) for velocity are ...

متن کامل

Numerical Methods for a Model for Compressible Miscible Displacement in Porous Media

A nonlinear parabolic system is derived to describe compressible miscible displacement in a porous medium. The system is consistent with the usual model for incompressible miscible displacement. Two finite element procedures are introduced to approximate the concentration of one of the fluids and the pressure of the mixture. The concentration is treated by a Galerkin method in both procedures, ...

متن کامل

A combined mixed finite element method and local discontinuous Galerkin method for miscible displacement problem in porous media

A combined method consisting of the mixed finite element method for flow and the local discontinuous Galerkin method for transport is introduced for the one dimensional coupled system of incompressible miscible displacement problem. Optimal error estimates in L∞(0, T ;L) for concentration c, in L(0, T ;L) for cx and L ∞(0, T ;L) for velocity u are derived. The main technical difficulties in the...

متن کامل

Two-Grid Method for Miscible Displacement ProblembyMixed Finite ElementMethods andMixed Finite Element Method of Characteristics

Themiscible displacement of one incompressible fluid by another in a porous medium is governed by a system of two equations. One is elliptic form equation for the pressure and the other is parabolic form equation for the concentration of one of the fluids. Since only the velocity and not the pressure appears explicitly in the concentration equation, we use a mixed finite element method for the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Processes

سال: 2023

ISSN: ['2227-9717']

DOI: https://doi.org/10.3390/pr11041244